Shengzhi Wang

Flat A2, 18/F, Skypark, 17 Nelson Street, Mongkok, Hong Kong | +852 9382 5809 | shengzhiwang@mrc-cuhk.com

Research Interests

legged robot locomotion, legged manipulation, whole-body control and teleoperation of legged manipulator system, and cooperation control.

Education

The Chinese University of Hong Kong	Jan. 2023 – Present
Doctor of Philosophy in Mechanical and Automation Engineering	Hong Kong, China
Technical University of Munich	Oct. 2018 – Feb. 2021
Master of Science in Electrical Engineering and Information Technology	Munich, Germany
• Passed with distinction.	
University of Duisburg-Essen	Apr. 2016 – Sept. 2018
Bachelor of Science in Electrical Engineering and Information Technology	Duisburg, Germany
• Double Degree Program.	
China University of Mining and Technology	Sept. 2013 – Jul. 2015
Bachelor of Science in Electrical Engineering	Xuzhou, China

• Double Degree Program.

Research Experience

Research Assistant	Jul. $2021 - Dec. 2022$
Multi-scale Medical Robotics Center	Hong Kong
• Quadrupedal robots control and legged robots locomotion	
Master Thesis Research	Apr. $2020 - Nov. 2020$
German Aerospace Center (DLR)	Wessling, Germany
Goal: Enhance the robustness of the DCM-based walking algorithm for	humanoid robots
• Development of an online learning framework based on Iterative Learning Control	(ILC)
• Utilization of novel methods to adapt the ILC to the DCM-based walking algorithm	m
• Proof of the stability of ILC applied to DCM-based walking	
Research Intern	Aug. 2019 – Dec. 2019

Institute for Cognitive Systems, Technical University of Munich

Goal: Enable the robot to recognize itself in the mirror and detect novelty region on its face

• Design of deep auto-encoders to learn the appearance representation of the face

• Exploiting of the prediction error to learn the visual novelty detection

Aug. 2019 – Dec. 2019 Munich, Germany

Goal: Enable the robot arm to be controlled and to repeat the movement taught by humans

• Generating of PWM signals from microcontroller to control the servo motors

• Design of the controllers for different drawing tasks based on adaptive control

• Programming on SRAM to store and reuse the duty cycles

• Modeling of the kinematics and dynamics of UR10

Penalty-Kick of Humanoid Robot Nao

4-DoF Robot Arm Low Level Design

Goal: Enable the robot to score penalty goals against a goalkeeper in RoboCup

Goal: Program the Universal Robot UR10 to play tic-tac-toe against a human player

• Leader of the team to learn the scoring policy by the method of reinforcement learning

Publications

- S. Wang, X. Chu, and K. Au, "Towards Exact Interaction Force Control for Underactuated Quadrupedal Systems with Orthogonal Projection and Quadratic Programming," 2023 IEEE International Conference on Robotics and Automation (ICRA).
- Y. Tang, J. An, X. Chu, S. Wang, C. Wong, and K. Au, "Towards Safe Landing of Falling Quadruped Robots Using a 3-DoF Morphable Inertial Tail," 2023 IEEE International Conference on Robotics and Automation (ICRA).
- S. Wang, G. Mesesan, J. Englsberger, D. Lee, and C. Ott, "Online Virtual Repellent Point Adaptation for Biped Walking using Iterative Learning Control," 2020 IEEE-RAS International Conference on Humanoid Robots.
- M. Hoffmann, S. Wang, V. Outrata, E. Alzueta, and P. Lanillos, "Robot in the mirror: toward an embodied computational model of mirror self-recognition," *KI Künstliche Intelligenz* (2021), doi: 10.1007/s13218-020-00701-7.

Awards

- First price of the Robothon 2020 at Munich School of Robotics and Machine Intelligence, in Mar. 2020
- Scholarship from China University of Mining and Technology, in Nov. 2014

Skills

Technical Skills

- C/C++: proficiently used in the tic-tac-toe robot, the 4-DoF robot arm low level design project, and during the period as Research Assistant.
- **ROS**, **Gazebo**: proficiently used in research intern for the robot novelty detection project and during the period as Research Assistant.
- Assembler: proficiently used in 4-DoF robot arm low level design project.
- Python: 2 years of experience in a variety of student projects.
- Matlab: 7 years of experience in a variety of student projects.
- Simulink: 1 year proficiency in various student projects.

Languages

Projects

Tic-Tac-Toe Robot

Jun. 2019 – Jul. 2019

Apr. 2019 – Jun. 2019

Nov. 2019 – Feb. 2020

- Chinese: Native
- Cantonese: Native

- English: Proficient
- German: Proficient with C1 level